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.4bstract - Approximate reasoning using fuzzy rule based 
:systems have wide application in for example industrial 
control, property prediction, and in pattern recognition 
areas. 

In this paper we introduce our method which is 
conservative with respect to the degree of local fuzziness in 
the rule base, and demostrate its utility on a petroleum 
engineering problem. 

I. INTRODUCTION 

Sparse rule bases which do not contain redundant 
information can provide computational advantages to 
comprehensive rule bases. Also, sometimes there are 
natural gaps in the knowledge base. 

Fuzzy rule interpolation can be used to provide 
conclusions for observations for which there may be no 
overlap with even the supports of existing rules in the rule 
base. All of the methods developed are descendants of the 
Koczy and Hirota [ 1, 21 method of linear interpolation for 
sparse rule bases, and have various advantages and 
disadvantages. 

The criteria for evaluating interpolation methods must 
include elements such as the ability to form conclusions 
where it is appropriate, the formation of intuitively 
acceptable conclusions, and a computational complexity 
which would allow it to be useful in reducing the size of 
fuzzy rule bases. 

In this paper we introduce our method which is 
conservative [3] with respect to the degree of local fuzziness 
in the rule base. The notion of being intuitively acceptable 
is important, and can be said to be already inherent in the 
field of fuzzy logic. That is, the use of linguistic variables 
which are used as fuzzy rules is in some sense intuitive and 
qualitative. 
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11. PHILOSOPHICAL BACKGROUND 

This section introduces the philosophical basis of our 
approach, based on our previous work [3]. Fig. 1 illustrates 
a pair of rules: 

l 1  0 A I  A' A2 100 

A1 >> 0, 5, 25, 30 A*>> 35, 55, 55, 60 
A2 >> 70, 75, 95,100 B*>> 24, 59, 59, 69 
91 >> 0, 15. 20, 30 
92 >> 70, 85, 90.100 

Fig. 1. Rule set p2. 

The two rules are i f x  is A1 then y is B l ,  and i f x  is A2 
then y is B2. The observation A* does not overlap with the 
antecendents of either of the flanking two rules. An 
interpolated conclusion B* is shown, between the flanking 
consequents of the two rules. For simplicity, both the 
antecedent and consequent universes of discourse have been 
scaled to the 0 to 100 range above, and rules are represented 
by 2 support and 2 core points (to allow trapezoidal forms). 
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The initial starting point is that we do assume as little 
homogeneity in the rule base as possible. Thus, we treat 
the nearest core points of rules as all that is visible. Thus, 
A* is in a valley between A1 and A2, and whether A1 or 
A2 are actually plateaux is not visible, and is not used. 
The core points of B* are derived by simple linear 
interpolation between the nearest core points of Al ,  A2 and 
B1, B2. 

Once the core points of B* are determined, we reduce 
further the assumption of homogeneity in the rule base. 
That is, the interpolation of the right of B* is only between 
the the rightmost core point of B* and the leftmost core 
point of B2. This is consistent with the premise that A* 
need not be symmetrical, and with the notion that 
determining the right side of B* should be based on 
'nearby' information such as the right side of A* and the left 
sides of A2 and B2. 

This is in contrast to the initial method which derived 
the right side of B* from the right sides of AI, B1, A2, B2 
and A*. All of these except the latter are further away from 
the right side of A* or B* than the 'nearby' information we 
propose to use. 

The use of such 'nearby' information has real world 
plausibility, while there are few domains where it could be 
readily proven that there is justification for the assumption 
of handedness of the the rule shapes. In view of the claims 
to intuitive acceptability we make, we will first describe 
and derive our formulation geometrically before expressing 
the method in terms of the more usual equations using 
fuzzy distances. 

A Geometric Description of Method 

Given the subsection of the previous figure, below: 

U 

B2 I B* r' 
11' 

Fig. 2. Section of p2. 

Note that the grey regions 
highlight the (assumed) 
unknown nature of the rest 
of the rule base. 
The labels r ,  s indicate 
the spread of the obser- 
vation and the rule ante- 
cedent and represent their 
fuzziness. 
Clearly A2 is more 

fuzzy than A*. The labels 
r ' ,  S' indicate a potential 
spread of the conclusion 
(drawn in grey as it we 
have yet to calculate it), 
and the rule consequent. 

By observation, our intuition tells us that B2 is more 
fuzzy than A2, due to the shallower slope. That is, there 
would seem to be an increase in the overall fuzziness from 
the antecedent to the consequent in this rule. 

We have not normalised the A*,A2 and the B*,B2 
distances, as we prefer to do this explicitly using the values 
of U, U' as appropriate. 

Without using any information from rule 2 other than its 
core distances, we could calculate a value for r' as shown in 
Equation (1). 

U !  r ' = r . -  
U 

This is merely the normalisation of r from the A*,A2 
distance metric into the B*,B2 distance. Most likely, the 
value of r' will be some increase or decrease of the effect of 
this normalisation. We could similarly calculate a value for 
the normalisation of s into the B*,B2 distance, called s". 

U 1  
1 -  - s  .- 

U 

The relationship between the actual value of s'  we can 
measure from B2, and the calculated value s" provides an 
indication of the difference in fuzziness from rule antecedent 
to consequent. As we have already noted, A2 is clearly 
fuzzier than B2. This difference can be incorporated into (1) 
producing: 

(3) 

Since we are interested in the relative change in fuzziness 
from rule antecedent to consequent, we divide S I  - srr  by z ,  
being either S I ,  or s". The more conservative choice of 
divisor is S I ,  which we shall see produces a good 
compromise between two extremes. With this substitution 
we produce: 

U (4) 

Note that this will not work for crisp rule consequents, so 
in this case we make the less conservative, and perhaps 
more obvious, substitution producing Equation 5 .  

S '  
r ' = r  .- 

S 

Note that r r  is no longer dependent on the ratio of the 
different metrics, and is solely determined by the ratio of 
rule consequence to antecedent hzziness. This explains our 
previous comment regarding Equation (3) being a good 
compromise, between interpolation solely on the basis of 
the change in metric, versus solely on the basis of the 
change in rule fuzziness but ignoring the change in metric. 

For completeness, we note that Equation (5 )  will not 
work for crisp rule antecendents, hence we resort to 
Equation (l), which is appropriate as we need to use 
Equation (1) only in the case where both rule antecedent 
and conclusion are crisp, where the only information 
available is the change in metric. 

We can now explain the shape of r' in Fig. 1. The larger 
distance B*,B2 versus A*,A2 would be expected to 
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increase the width of r‘ versus r, and the shallower slope of 
B2 versus A2 also indicates a icrease of fuzziness. The 
steep slope of A* indicates low fuzziness in the observation 
which effect is combined. The actual values are shown in 
Fig. 1, the value of r is 5 ,  and the value of r’is 10. 

expensive process and hence core data such as permeability 
and porosity have to be estimated froin well logs. 

B Sample of Data 

B An example of the Method 

Fig. 3 illustrates a situation in which the technique 
described above provides a natural result, while the original 
technique provides an unsatisfactory result. 

1 

I 

B2 100 BI B* 

A I  >> 0, 20, 20, 30 A * > >  15, 25. 25. 40 
A2>> 60, 90. 90,100 B*>> 5 ,  15, 15, 30 g&k 

B1>> 0, 10, 10, 20 B*>> 20, 15, 15, 31 k&h 
B2>> 80, 85, 85,100 

Fig. 3. Rule set p6, methods G&K and K&H. 

The distortion of the conclusion is due to the 
interpolation of the left side support between the rule 
consequents. Our technique provides a good result because 
.the conclusion supports are only calculated relative to the 
local context between the appropriate adjacent core points. 

111. APPLICATION EXAMPLE 

A Background Description 

We applied the proposed methods to petroleum reservoir 
]modelling. The source of the data is from holes bored in 
areas where oil or gas is expected. 

These bore holes or wells produce data in two forms. 
‘The most reliable is core data, where an actual rock sample 
11s retrieved. Traditionally this took the form of cylindrical 
rock from the ‘core’ of the drilling, though it may now 
involve lowering a device to retrieve rock samples from an 
already bored well. A cheaper form of data collection is to 
lower sondes down a bore hole which can measure 
something which may be useful to predictions of rock 
properties, and record electrical signals. These signals were 
traditionally logged on long continuous scrolls of paper. 
‘The measurements can be sound, radiation, magnetic etc. 

In reservoir modelling, the logs are available in every 
hole at different depths but retrieving rock samples is an 
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Fig. 4. Sonic log (psec/ft, top axis) with 
superimposed core porosity. 

C Source of Data 

In this sample, we had data from one oil well. The data 
was obtained from the North West Shelf, Offshore 
Australia. We only use one log, namely RHOB, and one 
core data, namely permeability K. A total of 141 data 
points were recorded at various depths, together with the 
corresponding permeability measurements. 

The input data was normalised in range of 0 and 1 ,  and 
output data was in range of 0.1 and 0.9. Normalisation or 
scaling of the input and the output data is not absolutely 
necessary but is convenient and appropriate for certain 
applications. 
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The input data was partitioned into three possible 
intervals. The linguistic values are small (from 0 to 0.3), 
medium (from 0.2 to 0 . Q  and large (from 0.65 to 1). Each 
interval of input data corresponds to one of fuzzy 
membership functions which are provided by experts. In 
addition, the expert tells us two rules. That is, 

if RHOB is small, then K is high, 

if RHOB is large, then K is low. 
and 

Also the expert tell us RHOB and K have some 
correspondence, with linear or polynomial relationship 
only. Fig. 3 shows three fuzzy membership functions of the 
input RHOB provided by the expert. 

IJ 

RHOB 
A l > >  0, 0,20, 30 A*>> 20, 30,65,80 
A2>> 65,80, 1, 1 

Fig. 5 .  Input membership functions 
’ (Al=Small; A*=Medium; AZ=Large) 

We also know the permeability measured in laboratory 
when RHOB is small and large, but we do not have the 
values of the permeability when RHOB is medium. Now 
the problem is how to estimate permeability when RHOB 
is medium. 

D Fuzzy logic to get membership functions 

We can get fuzzy membership functions of permeability 
based on the rules provided by the experts and the fuzzy 
extension principle. First we use regression methods to get 
the equations 

&ow = f(RHOBlarge), 

Khigh = f(RHOBsmal1). 

and 

Then we use the fuzzy extension principle to get 

where i=l,2; and j=small, large. 

crisp sets X and Y, and y = f(x). 
Fig. 5 shows the correlation between hzzy sets A and B, 

Fig. 6. Fuzzy extension principle 

For Al->Bl,  we get 

Khigh = -5* RHOBsmall* RHOBSmall + 0.85. 

For A2->B2, 

Klow = -O.X* RHOBlarg ,  + 1.05. 

Thus, we can easily produce the membership functions B 1 
and B2. B* in Fig. 6 is based on G&K’s method, and Fig. 
7 shows the result using K&H’s method. 

K 
B1>>.85,.85,.65,.40 B*>>.68,.61,.47,.38 (G&K) 
B2>>.53,.41,.25,.25 

Fig. 7. Output membership function B* (G&K) 
(B l=High; B*=Medium; B2=Low) 

In Fig. 6, the consequent part for the medium rule is 
quite reasonable. In Fig. 7, however, the consequent is not 
very useful. The trapezoid for medium overlaps noticeably 
with the trapezoid for high, which is counterintuitive, and 
not particularly meaningful. 

This is of course due to the effect of the wide span of the 
core of B 1 as compared with the width of span of the core of 
B2. This produces a result in this case which is not 
intuitive. 



Fig. 9 is the plot of both the linear and polynomial 
predictions for permeability using our technique G & K .  

GGiK 

B 1>>.85,.85,.65,.40 B*>>.75,.69,.42,.29 (K&H) 
B2>>.53 ,.4 1 ,.25 ,.25 

Fig. 8. Output membership function B* (K&H) 
(B I=High; B*=Medium; B2=Low) 

In the interest of fairness, we must point out that we can 
find circumstances in which our method produces results 
which appear less correct than the original K6czy and 
Hirota technique. We are investigating these further. 

E' Prediction of Permeability 

We get the following linear and the polynomial 
equations respectively based on A* and B* using 
regression methods and fuzzy extension principle, instead of 
using fuzzy reasoning such as dehzification of centre of the 
area which will get the average results. 

Linear: 

Kmedium =-0.4744*RHOBmediu, -!- 0 . 7 6 6 3  (G&K) 

Kmedium =-0.7695*RHOBmedium + 0.9126 O(&H) 

Polynomial: 

Table 1 shows the total sum of squares (TSS) error 
measure of both G&K's and K&H's methods to predict 
permeability. Clearly, the result of G&K's method is better 
than that of K&H's. 

Table 1. Total sum of error squares (TSS) for G&K 
and K&H' mcthods. 

0 2  0 3  0 4  0 5  0 6  0 7  0 8  

RHOB 

Fig 9. Plot of linear and polynomial 
permcability prediction by G&K 

The result does not appear to be the line of best fit to the 
points. This may be a reasonable interpolation from the 
values of the low and high points. Please note also that at 
this scale the polynomial function is close to a straight 
line. 

K&H 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 

RHOB 

Fig. 10. Plot of linear and polynomial 
permeability prediction by K&H 

In Fig. 10, we see that the result using technique K&H, 
the line is a worse fit for the points, and produces a 10% 
worse result in terms of tss (see Table 1) in the polynomial 
case. In the linear case the results are essentially the same, 
though we have noted that by qualitative judgement of the 
Figs. 9 and 10 we can see that the technique G&K is better 
than the technique K&H. 

IV. CONCLUSION 

We have demonstrated our technique G&K performs 
better than the previous technique in an application using 
petroleum engineering data. That data was processed in a 
novel fashion to produce an artificially sparse rule base,. 

We have also used this technique for interpolaon in 
hierarchical rule bases [4]. 

61 



REFERENCES 

[l] Koczy, L.T. and Mirota, K. 1990, ‘‘Fuzzy Infcrcnce by 
Compact Rules,” Proc. of Int. Conference on Fuzzy 
Logic & Neural Networks IIZUKA ’90, Iizuka 
Fukuoka, 307-3 10. 

[2] Koczy, L.T. and Hirota, K. 1993, “Approximate 
Reasoning by Linear Rule Interpolation and General 
Approximation,” Inti. J .  of Approximate Reasoning, 9: 

[3] Gedeon, TD and Kbczy, LT “Conservation of 
fuzziness in rule interpolation,” Proceedings 1st Slovak 
International Symposium on Neural Networks and 
their Applications, pp. 13-19, Herlany, 1996. 

[4] Kbczy, L.T., Hirota, K. and Gedeon, T.D. 1997 Fuzzy 
rule interpolation by the conservation of relative 
fuzziness, Technical Report, 97-2, Hirota Lab., Chair 
of Basic Intelligent Sys., Dept. of Computational 
Intelligence and Systems Science, Tokyo Institute of 
Technology, Nagatsuta, Yokohama, 16 pages. 

197-225. 


